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ABSTRAC 'r 

A method of general pewbat ions  utilizing Chebyshev series is used ' 

to investigate motion in the vicinity of the L4 triangular point of the earth- 

moon system. The model used is that of the very restricted four body 
t 

r 

problem for the earth-moon-sun system. A harmonic orbit, in the numer- 

ical sense, with respect to a rotating coordinate frame centered at L4 is 

found. The period of this harmonic orbit, being equal to the period of the 

disturbing force, is the same as the moon's synodic period. This 'orbit 

remains within 6860km of the L4 point. It describes two different size 

loops about L4, the smaller one traversed in 36 percent of the period. The 

I disturbing force, being nearly periodic with half the moonls synodic period, 

I gives rise to another orbit about L4 which is nearly periodic with half the 

~ 

synodic period of the moon. This orbit remains within 4574km of the L4 
' 1  

I point for twelve periods investigated. Qeviations from the mid orbit dur- 

ing this time is less than 381 km. 
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A HARMONIC L4 ORBIT 

FOR 

THE VERY RESTRICTED FOUR-BODY PROBLEM ~ 

1. INTRODUCTION 

In some recent literature interest has been shown in the problem of the in- 

fluence of the sun on motion close to the libration points of the earth-moon sys- 

tem as well as motion about the earth and the moon itself. One possible model 

for the earth-moon-sun system in which the problem might be considered has 

been proposed by Su-Shu Huang (1960), who called it the "very restricted four- 

body problem. " Here the earth and moon describe circular orbits relative to 

one another, and their center of mass describes a circular orbit around the sun; 

all these orbits are Keplerian, lie in a planc, and no perturbations are con- 

sidered. Using this model Huang studied the motion of a fourth body of an in- 

finitesimal mass in a similar manner as in the restricted three-body problem. 

He conciudes this model gives a general idea of -&ere the f~urth  body could or 

could not go under given initial conditions when they are no longer very near the 

earth. Using a similar model Cronin et al. (1964) proved that under certain 

conditions the fourth body has a periodic motion, relative to a rotating coordi- 

nate frame, near each of the libration points of the restricted three-body prob- , 

lem. Their proof is based upon assumptions concerning the masses and dis- 

tances of the bodies which are not satisfied by the earth-moon-sun system. 
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Siferd (1965) used Huang's model for the earth-moon-sun system to gener- 

ate some periodic orbits. Using a numerical integration procedure, the equa- 

tions of motion for the very restricted four-body problem were iterated upon 

utilizing a digital computer until some periodic orbits were obtained. By this 

technique eight periodic orbits, in the numerical sense, with a respect to a: , 

rotating coordinate system were found. Three periodic orbits were around 

the earth, three were around the moon, and two were around the earth-moon 

libration point (L,) . No periodic orbits near the triangular points were 

obtained. 

Danby (1965) investigated the influence of the sun on motion close to the tri- 

angular points of the earth-moon system. He felt the very restricted four-body 

model inadequate for his investigation and therefore used a model in which the 

secular perturbations of the moon due to the sun were retained. The results 

may be said to strengthen the hope that stable motion around the triangular 

points of the earth-moon system is possible. Other investigators include Tapley, 
.. 

et al. (1963 and 1965) who used a model similar to the very restricted four-body 

model except the moon's orbit is inclined with respect to the earth-sun plane. 

The equations of motion for a particle near the triangular points of the earth- 

moon system are numerically integrated on a digital computer for various ini- 

tial conditions. One result indicates that a particle placed initially at a triangu- 

lar point (L4) with zero relative velocity has an envelope of motion, centered at 

L4, going through a mode of expansion to a value of one earth-moon distance for 
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the .major axis followed by a mode of contraction l o  a value of 1/8 earth-moon 

distance for the major axis. The envelope repeal i this sequence several times 

during the 2500-day period investigated. The naf tire of these data suggests that 

such a motion may persist for a period of time much longer than that considered 

in the study. 

' 

+ .  
The present paper uses the very restricted four-body problem model as 

proposed by Huang for the earth-moon-sun system. The merits of this model 

for the earth-moon-sun system are still in doubt; however , it has been used in 

this study as a first attempt to find orbits which remain near triangular points 

of the earth-moon system. Using a technique proposed by Carpenter (1966) ; a 

harmonic orbit in the numerical sense, with respect to the rotating coordinate 

frame'and about the L4 triangular point of the earth-moon system is found. In 

addition, a nearly periodic orbit having half the period of the harmonic orbit is .- 

obtained. 

2. THE MODEL AND COORDINATE SYSTEM 

Consider an infinitesimal body of mass, m in a system of three bodies m 1 , 

m2, and m3 which are the sun, earth, and moon respectively. Further assume 

that all four bodies remain in a plane so arranged that the center of mass, B of 

me and m3 is revolving around the center of mass , 0 , of the entire system in a 

circular orbit and m2 and m3 themselves are revolving around B also in circular 

orbits. Table I indicates the numerical values used for this model, and Figure 

1 shows the geometry. 
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Figure 1.  Geometry of the Coordinate System at Epoch 

The right angle X ,  Y axis system with its origin at the center of mass of the 

earth is rotating at a uniform rate so as to keep the center of mass of the moon 

on the X axis. The masses m, m l ,  m2, and m3 are in the X,  Y plane. A point 

Lq, in the X,  Y plane, is 60" from the X axis at lunar distance, as, and in 
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advance of the moon's position. This point corresponds to a triangular point of 

the earth-moon system three body problem. 

3. THE HARMONIC ORBIT 

Using the model described the motion of an infinitesimal mass, m in the 

vicinity of the L4 point was investigated with the purpose of obtaining a harmonic 

orbit in the numerical sense. This harmonic orbit has a period equal to the 
t 

period of the disturbing force, which for this model is the moon's synodic period. 

Musen's (1963) method is applied with the perturbations represented in Cheby- 

shev series as proposed by Carpenter (1966). In this method the geocentric 

position vector, r, of the mass m near the L4 triangular - -  point is given by 
-# 

-b r = (I++?,, + @ G  

+ where a and p are the components of the perturbations, ro is the position vector 
.& 

in the fixed reference ellipse, a is the semimajor axis of the reference ellipse 

n being the mean motion in the reference ellipse and t the time. The functions 

a and p can be represented by uniformly convergent series in the interval -1 I 
'\< 

t S l b y  \% 
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2 .  where the prime on the summation sign is used to indicate that the first term is 

to be factored by one-half. The T k ( ~ )  are the Chebyshev polynomials defined by 

Tk (T) = cos[kcos-'r] 
I 

where the coefficients of these polynomials are given by Qk and pk' 

The synodic period for the model being utilized is given by the equation 

2lr v ,  p =- 
n3'nl 

where nl and n3 are the mean motions of the sun and moon respectively. The 

dimensionless time T is related to time t from epoch by 

94. 
P L  7 =- 
P 

where t is zero at the epoch which is defined as t l ~  first time the mass ml  

crosses the positive X axis. 

I 
I Starting with initial'conditions at T = 0 in the X, Y plane and near the L4 * -  

, I  

point, an orbit was generated by uskg the Chebyshev polpomial procedure. 

Initial conditions corresponding to T of -1 and 1 were thus obtained. Using nu- 

merical partial derivatives from this orbit an iteration scheme was employed to 

match the initial conditions at r of -1 and 1. After several iterations this was 

accomplished, and the results are shown in Table II. The a' and p1 values, 

I 

I t  

' shown in this table, are derivatives of Q and p with respect to nt. Relative geo- ' 
i ;  

, centric errors  in position and velocity are indicated by the differences in Table 

11. These differences indicate agreement in ten significant figures which corre- 

spond to changes from 7 = -1 to 7 = 1 of 0.2915 meters in the position vector, 
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I TABLE XI. 
Initial Conditions at T = -1, 0, 1 for the Harmonic Orbit 

P ( ~ )  x io3 at(r) x lo3 pyT) x 102 

1.43123468 7.84005032 -1.341882564 

16.95842648 14.7369698 -0.507181064 

1.43123517 7.84005038 -1.341882534 

Differences 

a(+l) - a(-1) = -1.6~ 10”’ 

@(+1) -p(-l) = 4 . 9 ~  lo-’’ 

~‘(+l) - a?(-1) = 6. Ox lo-” 

pl(+l) - @*(-1) = 3. Ox lo-’’ 

< 
i r, and 1.12~ meters per second in the velocity vector, 2 From the n h e r -  

point of view it seem adequate to call this a harmonic’ orbit. 

Chebyshev coefficients for this orbit are given in Table III. Using the initial 

conditions at epoch this ’orbit was extended for a total of twelve synodic periods ._ 

(-1 5 r I 2.5)- This was done as  a further check to insure the accuracy of the 

orbit. For this time period agreement with the initial orbit was eight significant 
1 

figures in position and velocity. This is within the anticipated accuracy of the 

calculation. It was decided to plot the harmonic orbit with respect to a rotating 

coordinate system centered at L4. Referring to Figure 2, a geocentric vector, 

ro , directed toward L4 has a magnitude, a, defined by -b 
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TABLE III 
Chebyshev Coefficients for the IIxrmonic Orbit 

k 

3 

4 

5 

* 6  

' 7  

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 I\ 

2 0 ',\\ 

21 
\ 

22 \ 

23 

24 

25 

26 

27 

9233.8688 

-466.7498 

4193.3102 

-2839.4208 

1530.9949 

4927.4893 

-1877.9548 

-1940.7497 

507.1676 

356.8288 

-67.8275 

-41.2120 

4.4834 

4.3726 
/ 0.1851 

-0.6623 

-0.0905 

\ 0.1213 

0.0042 

-0.0196 

0.0048 

0.0024 

-0.0021 

-0.0001 

0.0005 

-0.0001 

-0.0001 

0.0000 

pk x lo6 
27 1.0928 

4715.9669 

-2590.7864 

-2764.2264 

7775.0747 

I 
I 

-3235.6624 v 

-5000.6993 

1552.0981 

127 1.41 17 

-301.5204 

-172.1400 

. .* I 36.8027 

13.0026 

-3.8665 

-0.0154 

0.4549 

-0.1980 

-0.0468 

0.0448 

-0.0019 

-0.0069 

0.0029 

0.0007 

-0.0009 

0.0000 

0.0002 

0.0000 

0.0000 

t 

9 
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a ,sa, x 
.- 
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/ 

c 

. I  

Figure 2. Coordinate Systems near L4 
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2 where a is the semimajor axis of the reference orbit, k, is the earth's gravita- 

tional parameter and n is equal to the mean motion of the moon, n3. The a ,  

'! 

@coordinate system has its origin a t z  with a directed a l o n g 5  and 0 at right 
7 

angles to a in the direction of motion in the reference orbit. 

A sa, @ coordinate system has its origin at (1 + a,) To which corresponds to 

L4. The value of a. is given by the quantity (a3 - a)/a where a3, the moon's ~ 

- 

semi-major axis, is taken to be 60 earth radii. 

The sa component is directed along < and /3 i s  the same component previ- 

ously defined but translated parallel to itself to the L4 point. Utilizing the data 

given in Table III the harmonic L4 orbit is plotted, see Figure 3, using the 8a, 

. 

1 

I '  
! 
,I ' 

Figure 3. A Harmonic L4 :>bit 
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@ coordinate axes. Units for this plot are dimensionless with respect to the 

semimajor axis of the reference orbit. The harmonic orbit remains close to 

the L4 point having a deviation of less than 1.8 percent (6860km) of the earth- 

moon distance. This orbit is seen to describe two different size loops about 'L4, 

the time in the smaller loop is 36 percent of the period. Conversion to the usual 
I t  

x, y coordinate system where x and y are centered at L4 parallel to sa, but . , 
have dimensionless units with respect to the semimajor axis of the moon is 

accomplished by the transformation 

a x = 6 a -  
a3 

and 

Since the ratio (a3/a) is near unity there would be no noticeable difference by _ _  

replacing 6cr and @ hy x and y respectively in Figure 3, this matter being brought 

to attention for purposes of calculation. 

4. A NEARLY PERIODIC ORBIT 

Since the disturbing force is nearly periodic with half the synodic period of 

the moon, it is possible to find orbits which are nearly periodic with half the 

moon's synodic period. One such orbit was obtained by approximately matching 

initial conditions at T of -1 and zero. The initial conditions are shown in Table 

N. If the orbit were periodic with half the moon's synodic period, initial con- 

ditions at T of -1 and zero would match with those at t = 1. The agreement in 

12 
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-1 

0 

1 

TABLE IV 
Initial Conditions at r = -1, 0, 1 for the Nearly Periodic Orbit 

a (TI x lo3 P(r) x io3 a'(r) x lo2 pyr) x io3 

6.67701926 9.31 38 1378 1.132682180 -9.25579538$ 

6.67701357 9.. 31377754 1.132682017 -9.25577168 

6.65506332 9.24996973 1.128066502 -9.18511281 

I Differences 

a(0) - a ( - l )  = -5.69~ lo-' 

p(0) -p(-l) =-3.62~10'~ 

a'(0) - a'(-1) = -1.63~ lo-' 

p'(0) - @'(-l) = 2.37 x lo-' 

aX0) - a(+l)  = 2.19~10-~ a'(0) - a'(+l) = 4.615~ . . 

p(0) - @(+I) = 6.38 x p'(0) -p'(+1) = -7.06~ 

9 

initial conditions between r of -1 and zero is eight significant figures in position 

.-  
and velocity; however, between r of zero and one there is only five significant 

, figure agreement. Further reduction of this difference between T of -I and zero 

tended to increase theidifferences between zero and one. A plot of this nearly 

periodic L4 orbit in the S a ,  p coordinate system Cor r between minus one and 

one is given in Figure 4. Also shown is the envelope of the orbit for six synodic 
1 

periods (-6 I r S 6), During this time interval the orbit remains within 1;2 

percent (4574 km) of the earth-moon distance from L4. Deviations from the r 

of minus one to one orbit are seen to be less than one tenth of a percent (381km) 

of the earth-moon distance. During longer time intervals the deviations are 

expected to increase. 

13 
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Figure 4. A Nearly Periodic L4 Orbit 
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I 

Using the Chebyshev polynomial approach, motion in the vicinity of L4 can 

be investigated for other models of the earth-moon-sun system. One of the 

more interesting models would include the moon moving in an eccentric orbit. 

With this model some insight may be gained as to the importance of the moon's 

eccentricity on motion near L4. The method is not restricted to simple models, 

e.g., it is possible to study motion near L4 using the actual motions of the .prin- 

cipal bodies taken from a general theory or from an ephemeris. 
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